US009276742B1

a2z United States Patent (10) Patent No.: US 9,276,742 B1
Krishnan et al. 45) Date of Patent: *Mar. 1, 2016
(54) UNIFIED STORAGE AND MANAGEMENT OF 2003/0185397 Al* 10/2003 Ishiguro GO6F 21/10
CRYPTOGRAPHIC KEYS AND 2005/0169475 Al 8/2005 C t al 80T
amus €t al.
CERTIFICATES 2006/0053285 Al 3/2006 Kimmel et al.
(71) Applicant: International Business Machines 2006/0080409 Al* 4/2006 Bieber GOGF 8/71
Corporation, Armonk, NY (US) 709/220
(72) Inventors: Subramanian Krishnan, Bangalore (Continued)
(IN); Nikunj R. Panchal, Mumbai (IN) FORFIGN PATENT DOCUMENTS
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) WO 2013093209 Al 6/2013
(*) Notice: Subject to any disclaimer, the term of this Bk . ODTHER I:iUIBLIICATIONS ¢ 2 Kev-Lifocvel
: ; jorkqvist et al., “Design and Implementation of a Key-Lifecycle
%atserét lls Sixlzertde((i) g; adjusted under 35 Management System”, IBM Research, Mar. 23, 2010, pp. 1-21.
e (b) by yS. “IBM WebSphere Cast Iron Hypervisor Edition V7.0 delivers rapid
: : : : ol cloud integration”, IBM United States Software Announcement 213-
Tlhl.s patent is subject to a terminal dis 421, dated Oct. 15, 2013, pp. 1-13.
claimer. “IBM WebSphere Cast Iron Version 7.0 Information Center”, IBM,
(21) Appl. No.: 14/676,084 Last updated: Nov. 13, 2013, Copyright IBM Corporation 2003,
. 2013, <http://pic.dhe.ibm.com/infocenter/wei/v7rOmO0/topic/com.
(22) Filed: Apr. 1,2015 ibm.wci.home.doc/infocenter homepage/ic__home.html>.
(Continued)
Related U.S. Application Data
(63) Continuation of application No. 14/496,387, filed on Primary Examiner — Chameli Das
Sep. 25, 2014. (74) Attorney, Agent, or Firm — Stephen R. Yoder
(51) Int.Cl (57) ABSTRACT
GOG6F 9/45 (2006.01) Cryptographic resources, such as those including PGP keys
HO4L 9/08 (2006.01) and certificates, are transformed such that they are understood
HO4L 9/32 (2006.01) by certificate repositories, such as in a format understood by
(52) US.CL the Java JAVA tools of JAVAKEYSTORE (JKS). JAVA is one
CPC oo HO4L 9/0894 (2013.01); HO4L 9/3263 ~ ©Xample of a general-purpose computer programming lan-
’ (2013.01) guage that is concurrent, class-based, object-oriented. JAVA
. . . ’ KEYSTORE is one example of a repository of security cer-
(58) Field of Classification Search tificates, such as authorization certificates and public key
None) certificates, used for instance in SSL encryption. The trans-
See application file for complete search history. formation of the cryptographic resources is completed such
. that the necessary metadata for retrieving the original cryp-
(56) References Cited tographic resources, or artifacts thereof, are retained. In that
way, cryptographic resources are effectively hidden within
U.S. PATENT DOCUMENTS the certificate repository until needed. The security program
applies an algorithm to generate keys for JKS storage such
5,136,707 A * 81992 Block oo HO4Q %S;}gig that the keys “masquerade” in a JKS canonical format until
5500071 A * 4/1996 Petrie et al. .oooovvvvvvvvrneenn. 705/53 the time in which the resources are needed to be in a PGP
7,549,174 Bl 6/2009 Falkner et al. canonical format.
7,823,190 B1 10/2010 Kacarov et al.
8,621,205 B2 12/2013 Hubbell et al. 6 Claims, 7 Drawing Sheets

RECEIVE CRYPTOGRAPHIC
RESCURCE(S), 5255

/ 250

TRANSFORM THE CRYPTOGRAPHIC
RESOURCE(S) INTO REPOSITORY-
IMPORTABLE RESOURCE(S), 5260

|

STORE THE REPOSITORY-

REPOSITORY, 8265

IMPORTABLE RESOURCE(S) INA ‘

I

RESOURCE(S) ARE NEEDED FOR

DETERMINE THE CRYPTOGRAPHIC
DATA COMMUNICATION, S270

RESOURCE(S) FROM THE

RESOURCE(S), 5275

CREATE THE CRYPTOGRAPHIC

REPOSITORY-IMPORTABLE

PROVIDE FOR SECURE DATA
COMMUNICATION, 5280

US 9,276,742 B1
Page 2

(56)

2006/0218400
2007/0116282
2007/0180509
2008/0123855
2008/0273706
2012/0170750
2013/0097425
2013/0163755

2014/0324865

2014/0337624
2014/0369498
2015/0095999
2015/0121063

References Cited

U.S. PATENT DOCUMENTS

Al
Al*
Al*
Al*
Al
Al
Al
Al*

Al*

Al*
Al

Al*
Al*

9/2006
5/2007
8/2007
5/2008
11/2008
7/2012
4/2013
6/2013

10/2014

11/2014
12/2014
4/2015
4/2015

Kimmel et al.

Hawkes et al. 380/239

Swartz et al. 726/9

Thomascccccevernrne. 380/277

Noll

Orsini et al.

Almandos et al.

Nagai .cccoverncnnn HO4L 9/0822

380/44

Mizutani GO6F 11/079
707/737

Savageetal. 713/168

Hammersmith

Toth oo 726/6

Maileretal. 713/153

OTHER PUBLICATIONS
“IBM Websphere DataPower Cast Iron Appliance XH40 firmware
V7.0 delivers rapid cloud integration”, IBM United States Hardware
Announcement 113-175, dated Oct. 15, 2013, pp. 1-11.
“Pretty Good Privacy”, Wikipedia, the free encyclopedia, page last
modified May 30, 2014, <http://en.wikipedia.org/wiki/Pretty__
Good__Privacy>.
“Transport Layer Security”, Wikipedia, the free encyclopedia, page
last modified May 30, 2014, <http://en.wikipedia.org/wiki/Secure__
Sockets_ Layer>.
U.S. Appl. No. 14/496,387, filed Sep. 25, 2014, Entitled “Unified
Storage and Management of Cryptographic Keys and Certificates”.
Appendix P: List of IBM Patents or Patent Applications Treated As
Related, Apr. 1, 2015, pp. 1-2.

* cited by examiner

U.S. Patent Mar. 1, 2016 Sheet 1 of 7 US 9,276,742 B1

USER SYSTEM, 102

USER COMPUTER, 200
COMMUNICATION MEMORY, 208
UNIT, 202 PERSISTENT
x » RAM, 230 | » STORAGE, 210
y
SECURITY
PROCESSOR SET, f | CACHE, | | | PROGRAM
204 ;—l 1222 1 200 ’
" oU0
I/O INTERFACE SET, REPOSITORY
206 302
7'y 7'y —
y Y
DISPLAY, 212 EXTERNAL
DEVICES, 214

Fig. 1

U.S. Patent

Mar. 1, 2016 Sheet 2 of 7

RECEIVE CRYPTOGRAPHIC
RESOURCE(S), S255

A 4

TRANSFORM THE CRYPTOGRAPHIC
RESOURCE(S) INTO REPOSITORY-
IMPORTABLE RESOURCE(S), S260

A 4

STORE THE REPOSITORY-
IMPORTABLE RESOURCE(S) IN A
REPOSITORY, S265

A 4

DETERMINE THE CRYPTOGRAPHIC
RESOURCE(S) ARE NEEDED FOR
DATA COMMUNICATION, S270

CREATE THE CRYPTOGRAPHIC
RESOURCE(S) FROM THE
REPOSITORY-IMPORTABLE
RESOURCE(S), S275

A 4

PROVIDE FOR SECURE DATA
COMMUNICATION, S280

US 9,276,742 B1

/ 250

U.S. Patent Mar. 1, 2016 Sheet 3 of 7 US 9,276,742 B1

SECURITY PROGRAM, 300

RECEIVE DATA
CRYPTOGRAPHIC COMMUNICATION
RESOURCE(S) MODULE, 370
MODULE, 355

REPOSITORY- CREATE
IMPORTABLE CRYPTOGRAPHIC
RESOURCE(S) RESOUCRE(S)
MODULE, 360 MODULE, 375

STORE MODULE,
365

U.S. Patent Mar. 1, 2016 Sheet 4 of 7 US 9,276,742 B1

404

400 _,%/

» 418
402
A 4
412 <
A
A
408
A\ 4
A
414 |« > 410
A
C
416 «—>» 420
406

U.S. Patent Mar. 1, 2016 Sheet 5 of 7 US 9,276,742 B1

RECEIVE PGP KEY RING FILES
AND CORRESPONDING
PASSPHRASE(S), S502 / 500

A 4

READ SECRET KEY FROM THE
SECRET KEY RING, S504

A 4

EXTRACT “PGPPRIVATEKEY”
FROM THE SECRET KEY, S506

A 4

TRANSFORM “PGPPRIVATEKEY”
TO “PRIVATEKEY,” S508

A 4

READ “PGPPUBLICKEY” FROM
THE PUBLIC KEY RING, S510

A 4

TRANSFORM “PGPPUBLICKEY”
TO “PUBLICKEY,” S512

CREATE A DIGITAL CERTIFICATE
WITH THE KEY PAIR “PRIVATEKEY”
AND “PUBLICKEY,” S514

Fig. 5

U.S. Patent Mar. 1, 2016 Sheet 6 of 7 US 9,276,742 B1

CONVERTER PROGRAM, 418

PGP PUBLIC / f603 PKCS12
SECRET KEY RING » CERTIFICATE
FILES, 602 REPOSITORY, 604
605
PKCS12
CERTIFICATE S »| _ CERTIFICATE

REPOSITORY, 604 REPOSITORY, 606

Fig. 6

U.S. Patent Mar. 1, 2016 Sheet 7 of 7 US 9,276,742 B1

700
RETRIEVE A PUBLIC KEY /
NAME AND CONTENT, S702

v
READ “PUBLICKEY” FROM A
REPOSITORY, S704

A 4

TRANSFORM “PUBLICKEY” TO
‘PGPPUBLICKEY,” S706

A 4

ENCRYPT A FILE USING
‘PGPPUBLICKE,” S708

Fig. 7

US 9,276,742 B1

1
UNIFIED STORAGE AND MANAGEMENT OF
CRYPTOGRAPHIC KEYS AND
CERTIFICATES

FIELD OF THE INVENTION

The present invention relates generally to the field of data
security, and more particularly to storage and management of
cryptographic resources.

BACKGROUND OF THE INVENTION

Regulations and standards are in place which mandate that
data is secure and make business transactions subject to com-
pliance of these standards and regulations. The peripheral
component interconnect (PCI) standard is one such example
from the finance domain. Cryptographic protocols such as
secure sockets layer (SSL) and transport layer security (TLS)
provide security for data in transit over the internet. Pretty
good privacy (PGP) is a cryptographic resource used for
securing both data at rest as well as data in transit and it also
needs an underlying key infrastructure. There are tools and
libraries to generate and manage SSL keys and certificates,
and tools and libraries to generate and manage PGP keys and
certificates, also referred to herein as cryptographic artifacts.

SUMMARY

In one aspect of the present invention, a method, a com-
puter program product, and a system includes: receiving a
cryptographic resource including a first artifact in a first for-
mat having a metadata set, converting the first artifact to a
second artifact having a second format, storing the second
artifact in a repository, and responsive to a request for the first
artifact, creating a third artifact based on the second artifact.
The first artifact cannot be stored in the repository in the first
format. The second artifact in the second format retains the
metadata set of the first artifact. The third artifact is a func-
tional copy of the first artifact.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a schematic view of a first embodiment of a
system according to the present invention;

FIG. 2 is a flowchart showing a first method performed, at
least in part, by the first embodiment system;

FIG. 3 is a schematic view of amachine logic (for example,
software) portion according to an embodiment of the present
invention for performing the method shown in FIG. 2;

FIG. 4 is a schematic view of a second embodiment of a
system according to the present invention;

FIG. 5 is a flowchart showing a second method performed,
at least in part, by the second embodiment system;

FIG. 6 is a schematic view of amachine logic (for example,
software) portion according to an embodiment of the present
invention for performing the method shown in FIG. 3; and

FIG. 7 is a flowchart showing a third method performed, at
least in part, by the second embodiment system.

DETAILED DESCRIPTION

Cryptographic resources, such as those including PGP
keys and certificates, are transformed such that they are
understood by certificate repositories, such as in a format
understood by the JAVA tools of JAVA KEYSTORE (JKS).
JAVA is one example of a general-purpose computer pro-

10

15

20

25

30

35

40

45

50

55

60

65

2

gramming language that is concurrent, class-based, object-
oriented. JAVA KEYSTORE is one example of a repository of
security certificates, such as authorization certificates and
public key certificates, used for instance in SSL encryption.
The transformation of the cryptographic resources is com-
pleted such that the necessary metadata for retrieving the
original cryptographic resources, or artifacts thereof, are
retained. In that way, cryptographic resources are effectively
hidden within the certificate repository until needed. The
security program applies an algorithm to generate keys for
JKS storage such that the keys “masquerade” ina JKS canoni-
cal format until the time in which the resources are needed to
be in a PGP canonical format. The present invention may be
a system, a method, and/or a computer program product. The
computer program product may include a computer readable
storage medium (or media) having computer readable pro-
gram instructions thereon for causing a processor to carry out
aspects of the present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium, or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network, and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers, and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network, and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions

US 9,276,742 B1

3

may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture, including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus, or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other device
implement the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical function
(s). In some alternative implementations, the functions noted
in the block may occur out of the order noted in the Figures.
For example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may some-
times be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi-
nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-

20

25

30

40

45

50

55

4

ware-based systems that perform the specified functions, or
acts, or carry out combinations of special purpose hardware
and computer instructions.

The present invention will now be described in detail with
reference to the Figures. FIG. 1 is a functional block diagram
illustrating various portions of user computer system 102, in
accordance with one embodiment of the present invention,
including: user computer 200; communication unit 202; pro-
cessor set 204; input/output (I/0) interface set 206; memory
device 208; persistent storage device 210; display device 212;
external device set 214; random access memory (RAM)
devices 230; cache memory device 232; security program
300; and certificate repository 302.

Sub-system 102 may be a laptop computer, tablet com-
puter, netbook computer, personal computer (PC), a desktop
computer, a personal digital assistant (PDA), a smart phone,
or any programmable electronic device. Program 300 is a
collection of machine readable instructions and/or data that is
used to create, manage, and control certain software functions
that will be discussed in detail below.

Sub-system 102 is shown as a block diagram with many
double arrows. These double arrows (no separate reference
numerals) represent a communications fabric, which pro-
vides communications between various components of sub-
system 102. This communications fabric can be implemented
with any architecture designed for passing data and/or control
information between processors (such as microprocessors,
communications and network processors, etc.), system
memory, peripheral devices, and any other hardware compo-
nent within a system. For example, the communications fab-
ric can be implemented, at least in part, with one or more
buses.

Memory 208 and persistent storage 210 are computer read-
able storage media. In general, memory 208 can include any
suitable volatile or non-volatile computer readable storage
media. It is further noted that, now and/or in the near future:
(1) external device(s) 214 may be able to supply, some or all,
memory for sub-system 102; and/or (ii) devices external to
sub-system 102 may be able to provide memory for sub-
system 102.

Program 300 is stored in persistent storage 210 for access
and/or execution by one or more of the respective computer
processors 204, usually through one or more memories of
memory 208. Persistent storage 210: (i) is at least more per-
sistent than a signal in transit; (ii) stores the program (includ-
ing its soft logic and/or data), on a tangible medium (such as
magnetic or optical domains); and (iii) is substantially less
persistent than permanent storage. Alternatively, data storage
may be more persistent and/or permanent than the type of
storage provided by persistent storage 210.

Program 300 may include both machine readable and per-
formable instructions, and/or substantive data (that is, the
type of data stored in a database). In this particular embodi-
ment, persistent storage 210 includes a magnetic hard disk
drive. To name some possible variations, persistent storage
210 may include a solid state hard drive, a semiconductor
storage device, read-only memory (ROM), erasable program-
mable read-only memory (EPROM), flash memory, or any
other computer readable storage media that is capable of
storing program instructions or digital information.

The media used by persistent storage 210 may also be
removable. For example, a removable hard drive may be used
for persistent storage 210. Other examples include optical and
magnetic disks, thumb drives, and smart cards that are
inserted into a drive for transfer onto another computer read-
able storage medium that is also part of persistent storage 210.

US 9,276,742 B1

5

Communications unit 202, in these examples, provides for
communications with other data processing systems or
devices external to sub-system 102. In these examples, com-
munications unit 202 includes one or more network interface
cards. Communications unit 202 may provide communica-
tions through the use of either, or both, physical and wireless
communications links. Any software modules discussed
herein may be downloaded to a persistent storage device
(such as persistent storage device 210) through a communi-
cations unit (such as communications unit 202).

1/O interface set 206 allows for input and output of data
with other devices that may be connected locally in data
communication with computer 200. For example, /O inter-
face set 206 provides a connection to external device set 214.
External device set 214 will typically include devices such as
a keyboard, keypad, a touch screen, and/or some other suit-
able input device. External device set 214 can also include
portable computer readable storage media such as, for
example, thumb drives, portable optical or magnetic disks,
and memory cards. Software and data used to practice
embodiments of the present invention, for example, program
300, can be stored on such portable computer readable stor-
age media. In these embodiments the relevant software may
(or may not) be loaded, in whole or in part, onto persistent
storage device 210 via l/O interface set 206. I/O interface set
206 also connects in data communication with display device
212.

Display device 212 provides a mechanism to display data
to a user and may be, for example, a computer monitor or a
smart phone display screen.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the present invention. However, it should be
appreciated that any particular program nomenclature herein
is used merely for convenience, and thus the present invention
should not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

Security program 300 operates to generate cryptographic
resources, such as PGP keys and certificates, in formats
understood by PGP tools and/or JKS tools according to the
process at hand. That is, the security program “masquerades”
cryptographic resources in formats other than PGP canonical
format, such as a JKS canonical format, until the time in
which the resources are needed to be in the PGP canonical
format.

FIG. 2 shows a flowchart depicting process 250, according
to the present invention. FIG. 3 shows security program 300
for performing at least some of the method steps of flowchart
250. This method and associated software will now be dis-
cussed, over the course of the following paragraphs, with
extensive reference to FIG. 2 (for the method step blocks) and
FIG. 3 (for the software blocks).

Processing beings with step S255, where receive crypto-
graphic resource(s) module (“mod™) 355 receives crypto-
graphic resource(s). A PGP key is an example of a crypto-
graphic resource. The PGP key and certificate may be
provided by a user or by a program for which encrypted data
communication is desired. Regardless of the source of the
cryptographic resource, this resource is oftentimes formatted
for active use in secure data communication. In this example,
the cryptographic resource is received in this “active use”
format. Specifically, the cryptographic resource is a PGP key
and certificate in a canonical format understood by PGP tools.
Alternatively, the received cryptographic resource is in
another format for use in secure data communication.

Processing proceeds to step S260, where repository-im-
portable resource(s) module 360 transforms the crypto-

10

15

20

25

30

40

45

55

60

65

6

graphic resource(s) into repository-importable resource(s).
This transformation is achieved by reformatting the received
cryptographic resource. In this example, the repository-im-
portable resource(s) are formatted for storage in a JAVAKEY
STORE (JKS), shown generically as repository 302 in FIG. 1.
JAVA is one example of a general-purpose computer pro-
gramming language that is concurrent, class-based, object-
oriented. JAVA KEYSTORE is one example of a repository of
security certificates, such as authorization certificates and
public key certificates, used for instance in SSL encryption.
(Note: the term(s) “JAVA,” “KEYSTORE,” and/or “JKS”
may be subject to trademark rights in various jurisdictions
throughout the world and are used here only in reference to
the products or services properly denominated by the marks
to the extent that such trademark rights may exist.) That is, the
cryptographic resource(s) received in step S255 is formatted
to a canonical format understood by certificate repository
tools. Alternatively, the cryptographic resource(s) are format-
ted to a format understood by other repositories. It should be
noted that the process of converting a PGP certificate to a
format understood by certificate repository tools is a “loss-
less” format change. By loss-less, there is no loss of metadata
that may later prevent retrieval of the original PGP certificate.
The process of converting from PGP to certificate repository
is discussed in more detail below.

Processing proceeds to step S265, where store module 365
stores the repository-importable resource(s) in a repository
302. By storing the repository-importable resource(s), the
original cryptographic resource(s) appears to be a mere
repository item instead of a cryptographic resource(s). It may
be said that the cryptographic resource(s) masquerades as a
repository item. Further, the re-formatted certificate or key
does not appear to be what it was originally, or could become
later.

Processing proceeds to step S270, where data communica-
tion module 370 determines that the cryptographic
resource(s) are needed for data communication. For example,
whenever there is a request to perform a PGP cryptographic
operation (such as encryption or decryption), the data com-
munication module determines that the resources are needed
and triggers the pointer/handle to the item required for the
operation. Alternatively, the pointer/handle is triggered oth-
erwise via the process of requesting the operation to be per-
formed.

Processing proceeds to step S275, where create crypto-
graphic resource(s) module 375 creates the cryptographic
resource(s) from the repository-importable resource(s). Upon
determination of a need for the cryptographic resource(s), the
repository-importable resource(s) being formatted for stor-
age are reformatted for “active use.” In this example, the PGP
key and certificate is reconstructed, via reformatting the
repository-importable resource(s). Alternatively, a functional
copy of the PGP key and certificate is created based on the
repository-importable resource(s). As stated above, the tran-
sition from one format to the other is a “loss-less” process. It
is due to the loss-less process that the reformatted repository-
importable resource(s) is understood by PGP tools for use in
secure data communication. It should be noted that not every
cryptographic resource may be formatted to any other reposi-
tory-importable format without losing important metadata
for later retrieval of the original cryptographic resource.

Processing ends at step S280, where data communication
module 370 provides for secure data communication by pro-
viding appropriate cryptographic resource(s). In this
example, PGP keys and/or certificates are provided upon
request by the data communication module.

US 9,276,742 B1

7

Some embodiments of the present invention recognize the
following facts, potential problems and/or potential areas for
improvement with respect to the current state of the art: (i)
there is a need for an underlying infrastructure to provide a
mechanism to both store and retrieve PGP keys for use by
cryptographic protocols such as SSI and TLS; (ii) there is an
ever-increasing need for securing enterprise data whether it is
data in transit or data at rest; (iii) PGP keys cannot be stored
in libraries that work on SSL keys; (iv) PGP keys cannot be
stored in libraries that work on cryptographic certificates; (v)
PGP keys cannot be manipulated by tools that work on SSL
keys; (vi) PGP keys cannot be manipulated by tools that work
on cryptographic certificates; (vii) conventional systems have
to manage two separate repositories all the time; (viii) con-
ventional solutions are complex, entailing lots of develop-
ment, testing, documentation, and/or maintenance effort;
and/or (ix) it is possible to convert PGP keys and/or certifi-
cates to a repository-recognized format without losing impor-
tant metadata that allows later retrieval of the original PGP
keys and/or certificates.

By way of example, there is an application runtime, or
run-time system, which allows applications running in it to
use SSL keys and certificates. The run-time system typically
includes the following: (i) an underlying repository for per-
sistence (this could be a file, a database, an xml, a flat file, a
standard format, or something proprietary); (ii) a command
line tool to add/remove/fetch/edit/list keys from this reposi-
tory implementation; (iii) a graphical user interface (GUI) to
do the same operations as the command list table (CLT), but
in a more intuitive and user-friendly way; and/or (iv) appli-
cation programming interfaces (APIs) in different supported
programming languages to manage and/or access the keys.
The applications running on the run-time system use the APIs
to access the keys and certificates whereas the GUI and CLT
are mostly used by human users of the run-time system. For a
run-time system that supports SSL keys and certificates, such
as the one in this example, when a need arises to allow other
applications to make use of PGP keys and certificates, there
are conventionally two options available to the user: (i) extend
the repository, CLT, GUI, and APIs to work for PGP keys and
certificates; and/or (i1) implement a separate repository, CLT,
GUI, and APIs for PGP keys and certificates. It should be
noted that some embodiments of the present invention apply
to the generic version of the keys and/or certificates that can
be imported into any repository. The PGP keys and/or certifi-
cates are formatted to be understood by repository tools.

Some embodiments of the present invention do not change
the existing CLTs, APIs, GUIs, and repository when con-
fronted with two or more applications that make use of the
same PGP keys and certificates. Some embodiments of the
present invention use a loss-less approach where a PGP key
masquerades as a non-PGP key until the time in which the
PGP key is actually to be used as a PGP key. At that time, the
key or certificate is re-converted to a PGP key. To accomplish
this, two new system components, or software modules, are
inserted at the appropriate positions in the architecture. In the
example that follows, specific application of the present
invention for handling PGP keys and certificates for storage in
a repository is described. Accordingly, asymmetric key algo-
rithms are employed and a key pair is obtained and trans-
formed in the discussion below.

FIG. 4 is a functional block diagram illustrating various
portions of user computer system 400, in accordance with one
embodiment of the present invention. In this example block
diagram a JAVA KEYSTORE repository is illustrated in the
user computer system 400 including: user computer 402; user
404; JAVA KEYSTORE 406; command line tool (CLT) 408;

5

10

15

20

25

30

35

40

45

50

55

60

65

8

interface set (GUI) 412; application programming interface
(API)410; application programs 414, 416; converter program
418; and re-converter program 420.

Converter program 418, also referred to as “repono” oper-
ates to convert PGP keys and certificates into a canonical
format understood by JAVA KEYSTORE 406 and imports it
into the JAVA KEYSTORE. Once this action is taken, the
existing GUI, CLT, and/or APIs can be used to operate on the
keys. Some embodiments of the present invention implement
the converter program according to the flowchart shown in
FIG. 5.

FIG. 5 shows flowchart 500 depicting a method performed
by converter program 418, according to an embodiment of the
present invention.

Processing begins at step S502, where a number of PGP
key ring files and a corresponding passphrase are received by
converter program 418 as input. In this example, the PGP key
ring files and corresponding passphrase are received as user
input. Alternatively, the files and passphrase are received
automatically via an auxiliary process initiated by a user.

Processing proceeds to step S504, where converter pro-
gram 418 iterates through the secret key ring to identify and
read the secret key into memory. As stated above, the secret
key is formatted such that it is understood by PGP tools.

Processing proceeds to step S506, where converter pro-
gram 418 extracts a “PGPPrivateKey” from the secret key.
Having extracted the PGPPrivateKey, a process may be
applied, as follows to convert this key to one understood by a
JAVA tool.

Processing proceeds to step S508, where converter pro-
gram 418 converts the “PGPPrivateKey” to a “PrivateKey.”
PrivateKey is a key having a format recognized by JAVA tools
such that the PrivateKey may be stored in a repository, such as
JAVA KEYSTORE.

Processing proceeds to step S510, where converter pro-
gram 418 iterates through the public key ring to identify and
read “PGPPublicKey” into memory. The PGPPublicKey is
the second key of the pair of keys associated with a corre-
sponding asymmetric key algorithm.

Processing proceeds to step S512, where converter pro-
gram 418 converts the “PGPPublicKey” to “PublicKey.” Pub-
licKey is a key having a format recognized by JAVA tools
such that the PublicKey may be stored in JAVA KEYSTORE
406. In some embodiments of the present invention, the PGP
certificate is used as the basis for building an SSL certificate,
the SSL certificate including the necessary metadata to
retrieve the PGP certificate.

Processing ends at step S514, where converter program
418 creates a certificate (e.g. digital certificate and identity
certificate) containing the converted key pair, PrivateKey and
PublicKey, and stores that certificate in JAVA KEYSTORE
406. In this embodiment, the converter program uses
“X509v3CertificateBuilder” to create the certificate. Alterna-
tively, another certificate creator is used to create a certificate
that is a functional copy of the PGP certificate and/or key.
Alternatively, the stored SSL certificate and/or key is con-
verted into a PGP certificate and/or key, removing the SSL
certificate and/or key from storage.

In this example, in order for the X509 certificate builder to
consume the PGP certificates and/or keys information from
the input PGP certificates and/or keys are extracted to create
intermediate artifacts. These intermediate artifacts are pro-
vided as consumable input to the X509 certificate builder.

FIG. 6 is an exemplary implementation of converter pro-
gram 418 as a utility, using generic references. The utility 603
within the converter program, which may be referred to as
“extractPKCS12 AndPublicKey,” helps convert the PGP keys

US 9,276,742 B1

9

602 to a PKCS12 format, stored in certificate repository 604
for repository export, which can be imported into any certifi-
cate repository 606. Providing a few details in the parameters
including: (i) the secret/public key ring file location; (ii) pass-
phrase; and/or (iii) issuer details. The utility 605 within con-
verter program, which may be referred to as
“importPKCS12IntoJKS,” helps import the extracted
PKCSI12 certificate repository 604 into a certificate reposi-
tory 606.

Re-converter program 420, also referred to as “accio,”
operates to re-convert the Key/Certificate in a canonical for-
mat understood by JAVA KEYSTORE back to a PGP Key/
Certificate in a canonical format understood by PGP tools for
use in PGP applications. Some embodiments of the present
invention implement the re-converter program according to
the flowschart shown in FIG. 7.

FIG. 7 shows flowchart 700 depicting a method performed
by re-converter program 420, according to an embodiment of
the present invention.

Processing begins at step S702, where re-converter pro-
gram 420 retrieves a public key name and content from the
JAVA KEYSTORE (created in step S512, above).

Processing proceeds to step S704, where re-converter pro-
gram 420 reads “PublicKey” from the JAVA KEYSTORE to
convert it back to “PGPPublicKey” format. Referring back to
FIG. 5, step S512, where “PGPPublicKey” is transformed to
“PublicKey,” the transformation from a PGP key to a public
key that may be stored in JAVA KEYSTORE is a “loss-less”
process, such that the metadata is preserved sufficiently to
revert back to a useful PGP key, “PGPPublicKey.”

Processing proceeds to step S706, where re-converter pro-
gram 420 transforms, or “re-converts,” the public key back to
the original PGP key. Because of the loss-less process men-
tioned above, “PublicKey” is effectively restored to the origi-
nal “PGPPublicKey” read into memory in step S510 of FIG.
5.

Processing ends at step S708, where re-converter program
420 encrypts a target file using the “PGPPublicKey.” Alter-
natively, having a PGP key and certificate produced accord-
ing to step S706, a user is free to take any actions that may be
performed using the PGP key and certificate as if the PGP key
and certificate had never been transformed. Actions include:
(1) encryption; (ii) decryption; (iii) signing; and (iv) verifica-
tion.

Some embodiments of the present invention can be imple-
mented within only 16 percent of the development time
required for some conventional approaches. The efficiency
for these embodiments is due to the fact that only the con-
verter and the re-converter need to be developed. Convention-
ally, either the entire repository as well as the tooling must be
re-implemented for the runtime system from scratch, or else
the existing repository and tooling must be enhanced to work
for PGP keys. Both of these alternative, conventional
approaches are non-trivial and need more development and
test time than some embodiments of the present invention.
For example, in a backup scenario where all configuration
files and data are to be backed up and restored later, some
embodiments of the present invention do not require addi-
tional actions to be performed to backup and restore the PGP
keys. Otherwise, the backup and restore mechanism must be
re-implemented for PGP keys.

Some embodiments of the present invention operate to
perform the following actions: (i) convert the PGP key(s) and
certificate(s) into a canonical format for storage in repository;
(i1) retrieve those converted PGP key(s) and certificate(s), as
needed; and (ii) convert the PGP key(s) and certificate(s) back
to a functional format in time for use.

10

15

20

25

30

35

40

45

50

55

60

65

10

Some embodiments of the present invention generate a new
name for the key alias used for PGP encryption/decryption
(through, for example, a pseudo-random or deterministic
algorithm) while storing the key in a repository. Then, using
the same name generation technique, the key is accessed from
the repository before converting it back to PGP key format.

Some embodiments of the present invention convert a PGP
key to masquerade as a non-PGP key until a time when the
non-PGP key actually needs to be used as a PGP key. At that
point the non-PGP key is returned to a PGP key format.

Some embodiments of the present invention may include
one, or more, of the following features, characteristics, and/or
advantages: (i) no need to support multiple data formats (the
PGP keys are converted to the existing data format and stored
in the existing repository); (ii) no need to use mutualized
interfaces for performing cryptographic functions; (iii) no
need for any translation modules that are coded against the
mutualized interfaces; (iv) use of existing optimized native
interfaces for performing the cryptographic functions at opti-
mal speed; (v) integrates into any existing tooling; (vi) the
CLT, GUI, and repository implementation do not have to be
re-written; (vi) readily applied by existing users of the runt-
ime system; and/or (vii) no need to change existing compo-
nents of the runtime system.

Some helpful definitions follow:

Present invention: should not be taken as an absolute indi-
cation that the subject matter described by the term “present
invention” is covered by either the claims as they are filed, or
by the claims that may eventually issue after patent prosecu-
tion; while the term “present invention™ is used to help the
reader to get a general feel for which disclosures herein that
are believed as maybe being new, this understanding, as indi-
cated by use of the term “present invention,” is tentative and
provisional and subject to change over the course of patent
prosecution as relevant information is developed and as the
claims are potentially amended.

Embodiment: see definition of “present invention”
above—similar cautions apply to the term “embodiment.”

and/or: inclusive or; for example, A, B “and/or” C means
that at least one of A or B or C is true and applicable.

User/subscriber: includes, but is not necessarily limited to,
the following: (i) a single individual human; (ii) an artificial
intelligence entity with sufficient intelligence to act as a user
or subscriber; and/or (iii) a group of related users or subscrib-
ers.

Computer: any device with significant data processing and/
or machine readable instruction reading capabilities includ-
ing, but not limited to: desktop computers, mainframe com-
puters, laptop computers, field-programmable gate array
(FPGA) based devices, smart phones, personal digital assis-
tants (PDAs), body-mounted or inserted computers, embed-
ded device style computers, application-specific integrated
circuit (ASIC) based devices.

What is claimed is:

1. A method comprising:

receiving a cryptographic resource including a first artifact
in a first format having a first metadata set, the first
format being a pretty good privacy (PGP) canonical
format;

converting the first artifact to a second artifact having a
second format;

storing the second artifact in a repository; and

responsive to a request for the first artifact, creating a third
artifact based on the second artifact;

US 9,276,742 B1

11

wherein:

the repository cannot store the first artifact, at least in part,
because the first artifact is formatted according to the
first format;

the second artifact being formatted according to the second
format retains the first metadata set of the first artifact;

the repository configured to store the second artifact, at
least in part, because the second artifact is formatted
according to the second format;

the third artifact is a functional copy of the first artifact, the
third artifact functionally replaces the first artifact;

the second format is a standard format of the repository;
and

the first format and the second format are distinct formats.

2. The method of claim 1, further comprising:

encrypting a file using the third artifact.

3. The method of claim 1, wherein:

the third artifact is formatted according to the first format;

the third artifact having the first metadata set.

5

10

12

4. The method of claim 1, wherein:

the cryptographic resource is a pretty good privacy (PGP)
key ring set;

the first artifact is a PGP key pair including a PGP private
key and a PGP public key;

the first format is a PGP format;

the second artifact is a key pair; and

the second format is selected from a group consisting of: a
secure socket layer (SSL) protocol and a transport layer
security (TLS) protocol.

5. The method of claim 4, further comprising:

extracting the PGP private key from a secret key ring; and

extracting the PGP public key from a public key ring;

wherein:

the step of converting the first artifact to a second artifact
having a second format includes building an SSL cer-
tificate from a PGP certificate.

6. The method of claim 4, wherein the repository is a JAVA

KEYSTORE (JKS) repository.

#* #* #* #* #*

